投资组合理论假设-有人知道关于马科维茨的投资组合理论的推导过程么

  • A+
所属分类:投资理财

为什么多数的年轻人看不起年收益6% - 10%的投资组合,而直接投身于更高回报的股票市场或外汇市场呢?

当年我将全部积蓄投身股市,在股灾中赔得底掉。

其实也就是几千块钱而已,还没有后边一个月工资多。

后来我再次投身股市,又遇到股灾,决定卧倒装死,成为了一名股东。

后来发现套牢了好多年,渐渐解套了。

现在再进股市,慢慢有盈利了。

几千块钱几万块钱,买到股灾经验,还有比这更值得投资么?

总比你人到中年,突然有信心了,全部身家几百几千万进股市,再来个杠杆满融资,然后遇到个股灾发现老婆孩子看着你的眼神无法面对了,然后跑去跳楼强吧?

我是非常支持年轻人玩玩股票的,只要不耽误正职工作就可以。

为什么多数的年轻人看不起年收益6% - 10%的投资组合,而直接投身于更高回报的股票市场或外汇市场呢?

其实这些回答没抓住问题的本来面目,一个人,二十岁有一千万,和三十岁,四十岁,五十岁,六十岁有一千万,是完全不一样的快乐和不一样的人生,所以人生每个阶段的钱带给人的内容是不一样的。

二十岁你有一千万,然后机遇巧合,和杨采钰结婚了,那是男才女貌般配。

六十岁有多少钱你和杨采钰结婚都是社会娱乐的话题。

春风得意马蹄疾,一日看尽长安花。是可遇不可求的人生际遇。到了垂垂老矣有那么多钱又有什么意思。

为什么多数的年轻人看不起年收益6% - 10%的投资组合,而直接投身于更高回报的股票市场或外汇市场呢?

投身市场我就是个例子

20岁吧,那个时候我接触的东西有外汇,A股。恰巧这两个东西的启动资金还真不多。于是我都试了试。当时的心路历程是这样的:我什么都不会,这钱也没想着挣,在一个当时就1000块钱赔了就赔了,就当买教训。万一以后自己真的行了,不说变成巴菲特。财务自由也行啊。

真的,这是我当时的心路历程。如果那个时候有告诉我,这个世界玩股票最厉害的那批人都很难做到年收益10%~20%的话,我绝对不会去碰股票。

事实上并没有任何技术支撑我们或者告诫我们――我们对盈利能力的认知不足的问题。

《22岁大学生,业余时间炒股年赚1000万》,你看我们看到的都是这种标题。如果我们把标题改一下《学会股票,让你的资金一年上涨6%》,如果我看到这个标题我连打开的兴趣都没有。媒体朋友对于股票盈利的超凡个例大肆宣扬的同时其实已经严重误导我们对于预期盈利的判断。

别人一年赚1000万,我可能做不到我也不要求挣那么多,一年对付个3,5万就行。这是绝大部分人对于股票严重压缩预期之后的最坏打算。这种预期是绝对可怕的,而事实也证明了这点,大部分人全都是市场的韭菜。

而且最重要的一点,现在很多人计算股票盈利的时候。他们的结算方式很有趣,就是这单出场现在挣了多少钱。其实这么计算没啥好处,就是跟别人唠嗑的时候说出去很爽。当你的朋友看到你喜气洋洋的神态,都会好奇问一下你有什么喜事,为啥这么高兴。“没啥事,就是前两天买了个股票,今天卖了挣点钱”虽然你很迫不及待的想要和朋友分享但是还是保持着低调谦逊的风格。

朋友一听肯定会不自觉的问道,挣多少啊,乐成这样。

“嗨,没挣几个钱,买的少,两天挣了一万多吧”

这种对话几乎每时每刻都在发生。试想一下你的朋友听说你挣钱了,而且在他们心里可能会有:就你这样的都能挣钱,那我差啥的心态。你看又一个韭菜发芽了

所以说不是我们看不起投资组合而是我们这代人完全高估了――股票最低盈利能力

最后推荐这几本书,不说把经济弄明白,但求能够知道其实每年能稳定6%的盈利已经很优秀了

有人知道关于马科维茨的投资组合理论的推导过程么?

马科维茨投资组合(mean-variance portfolio)使投资达到最优化的效果,也就是收益一定时,使风险最小。

投资组合中各项资产的权重为w=[w1, w2,…, wn]’,显然权重总和为1,即投资组合需要满足条件:w’1 = 1。

各项资产的收益为μ = [μ1, μ2,…, μn]’,各项资产收益总和为投资组合收益μP,即投资组合需要满足条件:w’μ = μP。

以上两个条件可以汇总为Aw=b,其中A = [1 μ]’,b = [1 μP]’。

投资组合的风险为各项资产的权重乘以各项资产收益的协方差矩阵:w’?w,马科维茨投资组合能使风险最小化,因此min (1/2 w’?w)时的w就是马科维茨投资组合的权重分配。

用拉格朗日乘数法求解:L = 1/2 w’?w - (Aw - b)’λ,解得w* = ?^(-1) A’ (A?^(-1)A’)^(-1) b。

考虑投资组合中包含无风险资产时,各项风险资产收益和无风险资产收益的总和为投资组合收益,即投资组合需要满足条件:w’μ + (1 - w’1) rf = μP。

马科维茨投资组合依然使风险最小化,求min (1/2 w’?w)时的w。

用拉格朗日乘数法求解:L = 1/2 w’?w - λ(w’(μ- 1rf)+ rf -μP),解得w*=((μP - rf) ?^(-1) (μ- 1rf))/( (μ- 1rf) ’?^(-1) (μ- 1rf))。